
Coordinate-Based Activation Likelihood
Estimation Meta-Analysis of Neuroimaging Data:
A Random-Effects Approach Based on Empirical

Estimates of Spatial Uncertainty

Simon B. Eickhoff,1,2* Angela R. Laird,3 Christian Grefkes,1,4 Ling E. Wang,1

Karl Zilles,1,2,5,6,7 and Peter T. Fox3,7

1Institut for Neuroscience and Biophysics—Medicine (INB 3), Research Center Jülich, Jülich, Germany
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Abstract: A widely used technique for coordinate-based meta-analyses of neuroimaging data is activation
likelihood estimation (ALE). ALE assesses the overlap between foci based on modeling them as probability
distributions centered at the respective coordinates. In this Human Brain Project/Neuroinformatics research,
the authors present a revised ALE algorithm addressing drawbacks associated with former implementa-
tions. The first change pertains to the size of the probability distributions, which had to be specified by the
used. To provide a more principled solution, the authors analyzed fMRI data of 21 subjects, each normal-
ized into MNI space using nine different approaches. This analysis provided quantitative estimates of
between-subject and between-template variability for 16 functionally defined regions, which were then used
to explicitly model the spatial uncertainty associated with each reported coordinate. Secondly, instead of
testing for an above-chance clustering between foci, the revised algorithm assesses above-chance clustering
between experiments. The spatial relationship between foci in a given experiment is now assumed to be
fixed and ALE results are assessed against a null-distribution of random spatial association between experi-
ments. Critically, this modification entails a change from fixed- to random-effects inference in ALE analysis
allowing generalization of the results to the entire population of studies analyzed. By comparative analysis
of real and simulated data, the authors showed that the revised ALE-algorithm overcomes conceptual prob-
lems of former meta-analyses and increases the specificity of the ensuing results without loosing the sensi-
tivity of the original approach. It may thus provide a methodologically improved tool for coordinate-based
meta-analyses on functional imaging data. Hum Brain Mapp 30:2907–2926, 2009. VVC 2009 Wiley-Liss, Inc.
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INTRODUCTION

Functional neuroimaging has provided ample informa-
tion about the location of cognitive and sensory processes
in the human brain. Nevertheless, it carries several limita-
tions, including rather small sample sizes, low reliability
[Feredoes and Postle, 2007; Raemaekers et al., 2007], and
its inherent subtraction logic, which is only sensitive to dif-
ferences between conditions [Price et al., 2005; Stark and
Squire, 2001]. Consequently, integration of data from sev-
eral studies in order to identify locations, which show a
consistent response across experiments (collectively involv-
ing hundreds of subjects and numerous variations in ex-
perimental design), has become an important task. Such
meta-analyses started by textual and graphical summaries
[Joseph, 2001; Peyron et al., 2000] and have progressed to
quantitative approaches for detecting significant conver-
gence among reported coordinates [Eickhoff et al., 2006a;
Farrell et al., 2005; Price et al., 2005; Wager et al., 2004;
Wager and Smith, 2003].
One of the most common algorithms for coordinate-

based meta-analyses is activation likelihood estimation
[ALE; Turkeltaub et al. 2002, Laird et al. 2005], which
treats reported foci not as points but as spatial probability
distributions centered at the given coordinates. ALE maps
are then obtained by computing the union of activation
probabilities for each voxel. To differentiate true conver-
gence of foci from random clustering (i.e., noise), a permu-
tation test is applied: to obtain an ALE null-distribution
the same number of foci as in the real analysis are ran-
domly redistributed throughout the brain and ALE maps
are computed as described above. The histogram of the
ALE scores obtained from several thousands of random
iterations is then used to assign P values to the observed
(experimental) values.
In spite of its success, ALE still has some conceptual

drawbacks: First, the size of the modeled Gaussians is
manually set to match the ‘‘average’’ smoothing kernel of
the original experiments, and hence largely subjective.
Moreover, the uncertainty in spatial location should not
depend on the applied smoothing [Fox et al., 2001]. Rather,
its main constituents are (i) the ‘‘between-subject variance’’
(due to the small sample sizes) and (ii) the ‘‘between-tem-
plate variance’’ introduced by different normalization strat-
egies (a main determinant of between-laboratory variance).
Secondly, the permutation analysis is anatomically

unconstrained and hence includes deep white matter in
spite of the predominant location of ‘‘true’’ activations
within the cerebral cortex, inducing a potential bias in the
permutation statistics.
Finally, the current statistical approach is designed to

test for above-chance clustering of individual foci (fixed-
effects analysis) not of results from different experiments
(random-effects analysis). Only random-effects studies,
however, allows generalization of the results beyond the
analyzed studies [Penny and Holmes, 2003; Wager et al.,
2007].

To overcome these limitations and to provide a more
valid framework for ALE meta-analyses, we here present
an empirical estimation of both between-subject and
between-template variances in fMRI studies, and propose
a revised algorithm for ALE analyses, which includes an
explicit modeling of the uncertainty associated with a
given focus, an anatomically constrained analysis space
and a random-effects inference.

MATERIALS AND METHODS

Quantification of Between-Subject and

Between-Template Variance

Experimental design and setup

In order to provide empirical estimates for the between-
subject and between-template variance we used data from
a previous fMRI study [Grefkes et al., 2008b] supple-
mented by additional volunteers. In total 21 subjects (13
males, age 39.6 6 14.9 years) with no history of neurologi-
cal or psychiatric diseases participated after informed con-
sent and approval by the local ethics committee. In the
experiment, subjects were asked to perform whole hand
fist opening and closing movements with either the left
(LH) or right (RH) hand (a third condition in the original
experiment was not considered here) in a block-design.
The instruction for the upcoming block was first presented
from video screen. After a jittered delay the circle started
blinking at a frequency of 1.5 Hz, requiring the subjects to
perform the fist closing movements synchronously to these
blinks. After 15 s, the blinking circle was replaced by a
white screen indicating the subjects to rest for 15 s until
the next block started. The experiment consisted of 24
pseudo-randomized activation blocks (counterbalanced
across subjects) and 26 resting baselines between, before
and after the activation blocks.

Image acquisition and processing

Functional MR images were acquired on a 3T Siemens
Trio (Siemens, Erlangen, Germany) whole-body scanner
using a gradient echo EPI sequence sensitive to the blood
oxygenation level-dependent (BOLD) effect using the fol-
lowing imaging parameters: TR 5 1600 ms, TE 5 30 ms,
FoV 5 200 mm, 26 axial slices, slice thickness 5 3.0 mm,
in-plane resolution 5 3.1 3 3.1 mm, flip angle 5 908, and
distance factor 5 10%. Additional high-resolution anatomi-
cal images were acquired for all subjects using a 3D
MPRAGE (magnetization-prepared, rapid acquisition gra-
dient echo) sequence with the following parameters: TR 5
2250 ms, TE 5 3.93 ms, FoV 5 256 mm, 176 sagittal slices,
slice thickness 5 1.0 mm, in-plane resolution 5 1.0 3
1.0 mm, flip angle 5 98, and distance factor 5 50%. Each
fMRI time series consisted of 457 images and was pre-
ceded by 4 dummy images allowing the MR scanner to
reach a steady state in T2* contrast. After the acquisition
of the dummy images, the experiment started with a base-
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line condition. For image preprocessing and analysis we
used the SPM 5 software package (http://www.fil.ion.
ucl.ac.uk). The EPI volumes were first corrected for
between scan movement [Ashburner and Friston, 2003].
Each subject’s data was then transformed into standard
stereotaxic space using nine different normalization
approaches (Table I). Importantly, all of these approaches
spatially normalized the data into the standard space of
the Montreal Neurological Institute (MNI).
The images of all nine time-series for each subject were spa-

tially smoothed using an isotropic 6 mm Gaussian kernel.
Identical single-subject analyses were performed for each
time-series, using a general linear model consisting of box-car
reference functions for each condition convolved with a ca-
nonical hemodynamic response [Kiebel and Holmes, 2003].
Movement parameters (estimated before normalization and
hence identical across datasets) were added as covariates to
control for movement related variance. Simple main effects
for each experimental condition were calculated for each sub-
ject by applying appropriate baseline contrasts.
Random-effects group analyses were computed sepa-

rately for each normalization approach by feeding the re-
spective first-level (individual) contrasts into a second-level
ANOVA (factor: condition, blocking factor: subject). In the
modeling of variance components, we allowed for viola-
tions of sphericity by modeling nonindependence across pa-
rameter estimates from the same subject, and allowing
unequal variances both between conditions and subjects.

Quantification of variances

The goal of this study was to provide empirical estimates
for the between-subject and between-template variance of
the stereotaxic locations of local maxima. The reason behind
this approach is that local maxima coordinates are usually
reported in fMRI studies and represent the data for ALE
meta-analyses. We hence identified the local maxima for 16
different brain regions (summarized in Table II) in each of

the nine random-effects analyses (analyzing the same sub-
jects but differing in the applied spatial normalization).
Moreover, all coordinates for the local maxima of these16
regions were also identified in the 189 (21 subjects 3 9 nor-
malizations) individual single subject analyses. The stereo-
taxic coordinates for the local maxima in the single-subject
analyses were determined based on assessing the individual
SPM[t] maps for the contrasts listed in Table II. In these
maps the local maximum (at P < 0.05 uncorrected) closest
to the corresponding group maximum was then located.
This approach has emerged as the standard for identifying
the location of corresponding activations in individual sub-
jects as needed for example to extract time courses for effec-
tive connectivity analyses [Booth et al., 2007; Heim et al., in

TABLE I. Normalization procedures applied to the data acquired for each of the 21 single subjects

for spatial normalization into the MNI reference space

Normalization Source Target Method

Lin2MNI152 T1 MNI-152 template 12 dof affine transformation
Norm2MNI152 T1 MNI-152 template Nonlinear discrete cosine transform
Lin2Colin27 T1 MNI single subject template 12 dof affine transformation
Norm2Colin27 T1 MNI single subject template Nonlinear discrete cosine transform
Lin2EPI EPI FIL EPI template (MNI space) 12 dof affine transformation
Norm2EPI EPI FIL EPI template (MNI space) Nonlinear discrete cosine transform
Seg2TPM EPI MNI tissue probability maps Unified segmentation
Seg2Colin EPI MNI single subject template Unified segmentation
Seg2TPM2Colin EPI MNI single subject template (via MNI tissue probability maps) Unified segmentation

For those normalization approaches, where the source image is designated as ‘‘EPI’’, the mean of the subjects EPI images following
movement correction was directly used for normalization. Those approaches, where the source image is designated as ‘‘T1’’, the high-re-
solution anatomical scan of each subject was first linearly coregistered to the corresponding mean EPI image before the transformation
parameters (moving the individual subject’s data into standard space) was computed from this T1 weighted image. Also note that while
all computations were carried out using SPM5, the first approach (Lin2MNI152) is equivalent to the FLIRT procedure used for spatial
normalization within FSL (www.fsl.fmrib.ox.ax.uk).

TABLE II. Overview of the regions whose variance with

respect to stereotaxic location between subjects and

normalization procedures analyzed in the present study

Region Abbreviation Contrast

M1 left M1 L R > 0 \ R > L
SMA left SMA L R > 0 \ R > L
SII left SII L R > 0 \ R > L
M1 right M1 R L > 0 \ L > R
SMA right SMA R L > 0 \ L > R
SII right SII R L > 0 \ L > R
PMC left PMC L L > 0 \ R > 0
PMC right PMC R L > 0 \ R > 0
Caudate nucleus left CN L L > 0 \ R > 0
Caudate nucleus right CN R L > 0 \ R > 0
V5 left V5 L L > 0 \ R > 0
V5 right V5 R L > 0 \ R > 0
Dorsal PFC left PFC L > 0 \ R > 0
Ventral PMC left vPMC L > 0 \ R > 0
V1 V1 0 > (L 1 R)
Medial posterior parietal cortex PPC 0 > (L 1 R)

The contrasts refer to the following experimental conditions: L,
paced left hand movements; R, paced right hand movements; 0,
resting baseline.
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press; Mechelli et al., 2005] and represents the robust
approach for localizing functionally equivalent regions in
single-subject neuroimaging datasets. All local maxima
were recorded in terms of their stereotaxic coordinates in
millimetres, i.e., ‘‘world-space.’’
To obtain an estimate for the between-subject variance

of the spatial localization of the local maxima, we com-
puted (separately for each normalization procedure) the
average Euclidean distance between the corresponding
maxima of different subjects. That is, for each region, we
computed the mean of the distances between the individ-
ual local maxima for that region obtained for each possible
pair of subjects. Likewise, the between-template variance
in spatial localization of local maxima was estimated by
the average Euclidean distance between the corresponding
maxima of the different group analyses obtained from the
same set of subjects.

The Modified ALE Algorithm

Uncertainty modeling

The width of the modeled probability distribution
should reflect the uncertainty of the reported spatial loca-
tion due to between-template and between-subject var-
iance. In the subsequent paragraphs, the mean Euclidean
Distance between corresponding foci of different subjects
will be referred to as EDsub, the mean Euclidean Distance
between corresponding maxima as observed in the differ-
ent group-analyses (differing only in spatial normalization)
as EDtemp. These values (EDsub/EDtemp) will henceforth be
used as empirical estimates of the between-subject and
between-template variability in the stereotaxic coordinates
of functional neuroimaging results. In order to model the
spatial uncertainty associated with a reported focus, these
EDs first have to be transformed into the equivalent kernel
sizes of Gaussian distributions used in ALE analysis. Note,
that this procedure requires the assumption of an isotropic
normal distribution of all displacements relative to the
‘‘true’’ locations. That is, we have to assume that EDsub

and EDtemp reflect the mean distance between locations
that are independent realizations of an isotropic and sta-
tionary (across voxels) Gaussian displacement. This is a
strong assumption but necessary in the absence of voxel-
wise empirical data on spatial uncertainty. If these assump-
tions are made, however, the displacement can readily be
described using a Maxwell-Boltzmann distribution. This dis-
tribution stems from the kinetic theory of gases and
describes the distribution of distances (vector magnitudes)
between particles that result from their random motion in
three dimensions. In this theory, the motion components
along each dimension are assumed to be independently and
normally distributed, i.e., following the same assumptions
we made for the misplacement of the activation foci. In the
basic form of the Maxwell-Boltzmann distribution, each of
the three underlying normal distributions (X, Y, Z displace-
ment) has a mean of 0 and a standard deviation of a. The

Euclidean distances computed from our empirical data
should hence be distributed according to a Maxwell-Boltz-
mann distribution whose a-parameter corresponds to the
desired r (standard deviation) of the underlying Gaussians
displacement. Importantly, the point-estimator l of a Max-
well-Boltzmann distribution (corresponding the mean of
our empirical data) can easily be derived if its a-parameter
is known [l 5 2aH(2/p)]. In order to derive this a-parame-
ter and hence the r of the Gaussian displacement, the mean
Euclidean Distances calculated from our data were thus
substituted the empirical estimate of l. Solving the equation
for a then yields the r of the underlying Gaussian distribu-
tion of the displacements.

rsub ¼ asub ¼ E Dsub

23
ffiffiffiffiffiffiffiffi
2=p

p ð1aÞ

rtemp ¼ atemp ¼ EDtemp

23
ffiffiffiffiffiffiffiffi
2=p

p ð1bÞ

Given the r of a Gaussian distribution, the corresponding
FWHM parameters can readily be computed as follows:

FWHMsub ¼ rsub

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
83 logð2Þ

p
ð2aÞ

FWHMtemp ¼ rtemp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
83 logð2Þ

p
ð2bÞ

Since the measuring error in Gaussian systems scales
inversely to the square root of the number of observations
(reduction of sampling error), an approximation of the
spatial uncertainty due to inter-subject variability in a
group of N (appropriately sampled) subjects can be esti-
mated as

FWHMsubðeffectiveÞ ¼ FWHMsubffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nsubjects

p ð3Þ

In order to obtain the spatial uncertainty of a given coordi-
nate the two components outlined above have to be com-
bined into one Gaussian distribution. As Gaussian kernels
combine by Pythagoras’ rule, the final FWHM used to
model the uncertainty in spatial location of the activations
reported by a particular study is hence given by

FWHMeffective ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFWHMtempÞ2 þ FWHMsubffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nsubjects

p
8>>>:

9>>>;
2

vuut ð4Þ

Spatial inference

The focus of spatial inference in meta-analysis should lie
on answering the question: ‘‘Where is the convergence
across experiments higher as it would be expected if their
results were independently distributed?’’ Importantly,
however, this independence under the null-distribution
should only pertain to the relationship between different
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studies. In contrast, the spatial relationship between the
individual foci reported for any given study (i.e., their
codistribution structure) must be considered a given prop-
erty of this study and hence unchangeable. This distinction
represents a key modification of previous ALE implementa-
tions and entails the change from fixed-effects (convergence
between foci) to random-effects (convergence between stud-
ies but not individual foci reported for the same study) in-
ference. In other words, to allow random-effects inference
the distribution of foci within each study must be conserved
as a fixed property, focusing the analysis on convergence
across different experiments. In order to accommodate these
requirements we applied the following procedure. First, all
foci reported for a given study are modeled as Gaussian
probability distributions as described above. The informa-
tion provided by the foci of a given study is then merged
into a single 3D-volume. To this end, the modeled probabil-
ities are combined over all foci reported in that experiment
by taking the voxel-wise union of their probability values
(i.e., 1�QNfoci

i ð1� pðiÞÞ, where p(i) is the probability associ-
ated with the ith focus at this particular voxel). Hereby a
‘‘modeled activation’’ (MA) map is computed. This map
contains for each voxel the probability of an activation
being located at exactly that position based on the reported
coordinates and the employed model of spatial uncertainty
(cf. Fig. 6, panel B1). The MA map can hence be concep-
tualized as a summary of the results reported in that spe-
cific study taking into account the spatial uncertainty asso-
ciated with the reported coordinates.
Following the original definition of ALE scores are then

calculated on a voxel-by-voxel basis by taking the union of
these individual MA maps. Given that functional activa-
tions are predominantly located in the grey matter, this
computation was confined to a broadly defined grey mat-
ter shell (>10% probability for grey matter, based on the
ICBM tissue probability maps [Evans et al., 1994]). The
resulting images then contain for each voxel of this ana-
tomically constrained analysis space an ALE score repre-
senting the convergence of reported foci at that position.
To enable spatial inference on these ALE scores, an em-

pirical null-distribution has to be established which allows
distinguishing random convergence (noise) from locations
of true convergence in the reported coordinates. Impor-
tantly, this distribution should reflect the null-hypothesis
of a random spatial association between experiments. That
is, the null-distribution against which the experimental
ALE scores are compared should represent the distribution
of ALE scores that would be obtained if no true (neurobio-
logical) convergence would be present. In such a case, any
overlap between the MA maps of different studies would
only happen by chance. In line with previous approaches
[Laird et al., 2005; Turkeltaub et al., 2002; Wager et al.,
2007], the null-distribution for inference on the ALE scores
is computed nonparametrically by a permutation proce-
dure. In this procedure, a random association between the
MA maps obtained from each study was established by
sampling each map at an independently chosen random

location. In order to constrain the sampling of the individ-
ual MA maps to the same locations as considered in the
actual analysis, however, the voxels from which the ran-
dom locations were drawn were restricted to the same
grey matter mask as described above. In practice, this
approach consists of picking a random grey matter voxel
from the MA map of study 1, then picking a (independ-
ently sampled) random grey matter voxel from the MA
map of study 2, study 3, etc. until one voxel was selected
from each MA map. The respective activation probabilities
(i.e., the values of the MA maps at the selected voxels)
were then recorded, yielding as many values as there had
been studies included in the meta-analysis. Importantly,
however, these values correspond to MA values, i.e., acti-
vation probabilities, that were sampled from random, spa-
tially independent locations. The union of these activation
probabilities is then computed in the same manner as
done for the meta-analysis itself in order to yield an ALE
score under the null-hypothesis of spatial independence.
This ALE score is recorded and the procedure iterated by
selecting a new set of random locations and computing
another ALE score under the null-distribution.
It is important to note that in this permutation approach

each of the individual iterations only yields a single ALE
value under the null-distribution. This is an important dis-
tinction to the conventional approach to ALE analyses,
where a complete volume of ALE scores (consisting of
�400,000 voxels, i.e., individual values) under the null-hy-
pothesis is obtained in a single iteration. Consequently, the
number of iterations has to be increased accordingly to
compensate for this imbalance. In the present analysis, we
used 1011 iterations of the permutation in order to con-
struct a sufficient sample of the ALE null-distribution
against which the experimental data may be assessed, as
opposed to 10,000 or more full volumes as in the conven-
tional analysis. This number could easily be lowered to
speed up the computation, e.g., for obtaining preliminary
results. It should, however, be considered, that even this
amount of iterations (which can usually be computed in
about a day) is rather small in relation to the number of
theoretically possible permutations and that reliability and
efficiency of nonparametric statistics depend on the num-
ber of samplings relative to the possible permutations
[Nichols and Holmes, 2002].

Example Data

Real data

The modified ALE approach is illustrated by a meta-
analysis on the brain activity evoked by finger tapping
experiments [Laird et al., 2008]. Using the BrainMap data-
base (www.brainmap.org), 38 papers reporting 73 individ-
ual experiments (347 subjects) with a total of 883 activation
foci were obtained (Table III, cf. Fig. 6). For comparison,
meta-analysis on these reported activations was also car-
ried out using the original ALE algorithm [Turkeltaub
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et al., 2002] as implemented in the UTHSC GingerALE
software (www.brainmap.org/ale) using 10,000 permuta-
tion to establish the null-distribution. Both analyses were
thresholded at a false discovery rate (FDR) corrected
threshold of P < 0.05 [Genovese et al., 2002; Laird et al.,
2005] and an additional cluster extend threshold of k 5 10
voxels.

Simulation analysis

In order to assess the face validity of our modification to
the ALE approach we also performed ALE meta-analyses
on two simulated datasets. It should be noted that the
‘‘studies’’ included into these datasets do not correspond
to any real data as published in the literature. Rather each
study solely refers to a set of individual foci, i.e., MNI

coordinates, which were generated in order to simulate sit-
uations occurring in meta-analyses.
The first simulated dataset consists of 25 studies. Each

of these studies is supposed to have investigated 12 sub-
jects in order to avoid confounding effects of different
sample sizes. For every study, we set one focus on the in-
ferior frontal gyrus corresponding to BA 44. Hence, this
region is the location of the ‘‘true’’ activation, which is to
be revealed by the meta-analyses. Furthermore, a single
one out of the 25 studies also features an activation in the
inferior parietal lobe (IPL). For this activation, however, 10
individual foci are given, corresponding to a situation
where individual local maxima are listed in a very detailed
fashion. This analysis aims at revealing the distinction
between fixed- and random-effects analyses. Fixed-effects
analyses as implemented in classical ALE assess the con-
vergence between individual foci. It should therefore
reveal a significant effect in the IPL because 10 foci cluster
closely within this area. In contradistinction, this location
should not become significant in a random-effects analysis,
as all of these foci were reported in the same study and
the object of inference is to reveal a convergence across
studies. Both methods, however, should identify the clus-
tering of activations in the inferior frontal gyrus.
The second dataset also consists of 25 studies, and again

features a true convergence of the reported activations in
BA 44. Out of these 25 studies, four are assumed to have
investigated 30 subjects each. Due to the higher reliability
resulting from such larger samples, these four foci all clus-
ter very tightly around a presumed true location of the
effect. The remaining 21 studies, however, only examined
four subjects, i.e., had very small sample sizes. Conse-
quently, the locations of the reported foci are simulated to
be more variable (due to the larger influence of sampling
effects). This analysis aims at testing the explicit variance
model employed in the revised ALE approach. As outlined
above, the between-subject variance enters the variance
model scaled by the sample size resulting in smaller
FWHMs for studies investigating larger samples. Conse-
quently the latter studies should have increased localizing
power in the ALE meta-analysis. In the present simulation,
we would hence expect that the results obtained from the
revised ALE algorithm would be less influenced by the
foci obtained from the smaller studies and, therefore, more
confined to the location of the foci reported in the four
larger studies.
To each of the individual studies in both simulated

meta-analyses, 10 further foci are added, which were
randomly (and independently across studies) allocated to
grey matter voxels. In real datasets, these foci would cor-
respond to activations evoked by other components of
the respective tasks. In the context of these meta-analy-
ses, however, they represent noise, as there is no conver-
gence between them. Both datasets are then analyzed
using the original ALE algorithm and its revised version
in the same manner as the experimental data described
above.

TABLE III. Overview of the individual experiments

included in the meta-analysis used to exemplify the new

approach for activation likelihood estimation (ALE)

Work Modality Contrasts
Reported

foci Subjects

Aoki et al., 2005 PET 3 1/7/12 10
Aramaki et al., 2006 fMRI 2 18/7 15
Blinkenberg et al., 1996 PET 1 10 8
Boecker et al., 1998 PET 1 20 7
Calautti et al., 2001 PET 4 10/10/4/10 7
Catalan et al., 1998 PET 1 9 13
Catalan et al., 1999 PET 1 12 13
Colebatch et al., 1991 PET 2 3/8 6
De Luca et al., 2005 fMRI 1 4 7
Denslow et al., 2005 fMRI 1 13 11
Fox et al., 2004 PET 1 1 12
Gelnar et al., 1999 fMRI 1 8 8
Gerardin et al., 2000 fMRI 1 24 8
Gosain et al., 2001 fMRI 1 2 5
Hanakawa et al., 2003 fMRI 1 25 10
Indovina and Sanes, 2001 fMRI 1 9 15
Jancke et al., 1999 fMRI 6 2/2/2/2/2/2 6
Jancke et al., 2000a fMRI 4 12/11/13/12 8
Jancke et al., 2000b fMRI 6 3/3/1/2/1/2 11
Joliot et al., 1998 PET 1 13 5
Joliot et al., 1999 PET/fMRI 3 11/16/20 8
Kawashima et al., 1999 PET 1 3 6
Kawashima et al., 2000 fMRI 1 10 8
Kuhtz-Buschbeck
et al., 2003

fMRI 2 8/12 12

Larsson et al., 1996 PET 1 14 8
Lehericy et al., 2006 fMRI 3 8/11/27 12
Lerner et al., 2004 PET 1 9 10
Lutz et al., 2000 fMRI 2 17/7 10
Mattay et al., 1998 fMRI 3 8/12/15 8
Muller et al., 2002 fMRI 1 4 10
Ramsey et al., 1996 PET/fMRI 2 1/1 10
Riecker et al., 2006 fMRI 2 6/8 10
Rounis et al., 2005 PET 1 17 8
Sadato et al., 1996 PET 1 6 10
Sadato et al., 1997 PET 6 13/15/3/6/

12/13
12

Seitz et al., 2000 fMRI 1 4 6
Wilson et al., 2004 fMRI 1 5 10
Yoo et al., 2005 fMRI 1 17 10

If more than one number is given in the column ‘‘Reported foci’’,
multiple experiments from the same article have been analyzed
(cf. Laird et al., 2008).
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RESULTS

Between-Subject Variance

There was a considerable variability in the location of
the local maxima of activation between the 21 subjects ana-
lyzed in the current study (see Fig. 1). In order to quantify
the uncertainty in spatial localization of the local maxima,
the Euclidean distance between corresponding maxima
was computed pairwise for all possible combinations,
separately for each normalization procedure employed

(see Fig. 2). The area-specific mean Euclidean distances

(averaged across normalizations) ranged from 7.6 mm (left

caudate nucleus) to 17.6 mm (prefrontal cortex/middle

frontal gyrus) (Fig. 2A). The effects of the approach used

for spatial normalization on the between-subject variance

(averaged across all areas), on the other hand (Fig. 2B),

was less pronounced. In particular, depending on the

applied normalization procedure, the between-subject var-

iances ranged from 11.0 mm (Norm2EPI) to 12.1 mm

(Lin2MNI152). The grand-average Euclidean distance

Figure 1.

Localization of the statistical maxima for the areas listed in Table II identified in the single subject

analyses (N 5 21). The data shown here is based on normalizing each subjects data into stand-

ard stereotaxic space using a linear transformation to the MNI152 template (Lin2MNI152, cf. Ta-

ble I) and is displayed on a surface view of the MNI single subject template.
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between corresponding maxima, averaged across all areas
and normalization procedures, which will subsequently be
considered the estimate of the between subject variance
(EDsub) was 11.6 mm, corresponding to a FWHM of the
Gaussian uncertainty model of 17:1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nsubjects

p
mm.

Between-Template Variance

For each of the nine normalization approaches consid-
ered in this experiment, a separate group (random-effects)
analysis was computed, and linear contrasts as listed in
Table II were evaluated. For illustration, Figure 3 shows
surface renderings of the contrast ‘‘L > 0 \ R > 0’’, as
tested in each individual group-analysis. It becomes evi-
dent, that although identical statistical analysis performed
on the exactly same fMRI data, the results (thresholded at
the same significance level) differ from each other with
respect to the size and the precise location of the activated
clusters of voxels. That is, the applied normalization proce-
dure does indeed affect the results of fMRI group analysis,

illustrating the need for considering the between-template
variance in meta-analysis.
As the present report is concerned with coordinate-

based meta-analysis, we did not test for voxel-wise differ-
ences between the ensuing contrast maps. In particular,
while such an analysis would be interesting in its own
right, it would not contribute to the quantification of the
spatial uncertainty associated with stereotaxic coordinates
for local maxima as reported in research papers and sub-
jected to meta-analyses. To quantify this uncertainty, how-
ever, is one of the major aims of the present revision to the
ALE approach. Our analysis and the ensuing estimation of
between-template variance hence focused on the variability
of local maxima coordinates induced by different normal-
ization procedures.
As illustrated (see Fig. 4), the local maxima for the 16

investigated brain regions (cf. Table II) were close but
clearly not identical across the nine performed analyses.
Again, it has to be stressed, that the only difference
between the datasets used to compute these contrasts was
the applied spatial normalization. The variance in the max-
ima coordinates (Table IV) can hence be attributed only to
between-template variability. In order to quantify the
uncertainty in the spatial localization of reported maxima
induced by different normalization procedures, the
between-template variability was assessed using the coor-
dinates for these local maxima (Table IV) as resulting from
applying different spatial normalization procedures to the
same original data. To this end, we computed the Euclid-
ean distance between corresponding maxima pairwise for
all possible combinations of group-analyses (Fig. 5, Table
IV). The area-specific mean Euclidean distances ranged
from 4.3 mm (left caudate nucleus) to 8.4 mm (V1). The
average Euclidean distance across all areas, which will
subsequently be considered the estimate of the between
template variance (EDtemp), was 5.7 mm, corresponding to
a FWHM of the Gaussian uncertainty model of 8.4 mm.

Modified ALE Analysis

Using the estimates for between-subject and between
template variability and formula (4) listed in the methods
section of this paper, the FWHM describing the uncer-
tainty in spatial location and hence the probability distri-
bution for each focus was computed for each experiment.
The average FWHM across all experiments was 10.2 6 0.4
mm (mean 6 SD), ranging from 9.5 to 11.4 mm. ALE
meta-analysis was then performed as outlined above: First
a modeled activation (MA) map was computed for each
experiment from the reported foci (see Fig. 6). ALE scores
for each voxel in the reference space were then computed
as the union of these activation probabilities across experi-
ments, tested against a null-distribution reflecting a ran-
dom spatial association of the MA maps across experi-
ments and thresholded at P < 0.05 (FDR corrected) as
shown in Figure 6.

Figure 2.

Mean Euclidean distance between corresponding maxima (com-

puted pairwise for all possible combination of group-analyses)

shown separately for each region (A: averaged over normaliza-

tion approaches) and normalization procedure (B: averaged

across regions). The average across all areas and normalization s,

i.e., the estimate of the between subject variance (EDsub) was

11.6 mm. In A, bars denote the standard deviation across nor-

malization approaches, in B across regions.

r Eickhoff et al. r

r 2914 r



The regions, which showed a significant convergence of
literature foci reported for finger-tapping experiments, cor-
responded anatomically [Eickhoff et al., 2005] to the motor
cortex, the dorsal and ventral premotor cortices, the pri-
mary and secondary somatosensory cortices, the cerebel-
lum and the thalamus, all of which were activated bilater-
ally. In addition, left hemispheric convergence was

observed in the anterior insula and the basal ganglia while
right hemispheric convergence was found in the prefrontal
cortex. These results are in good accordance to the well
established network for the control of hand movements
[e.g., Grefkes et al., 2008a; Rizzolatti and Luppino, 2001;
Vogt et al., 2007]. Furthermore, there is also a good agree-
ment between the findings obtained in the meta-analysis

Figure 3.

Significant results for the contrast ‘‘L > 0 \ R > 0’’, i.e., regions

that were considered active independently of the moved hand at

a threshold of P < 0.001 (uncorrected). Data is shown for each

of the nine group analyses performed in identical fashion on the

same subjects but differing in the approaches used to transform

each subject’s data into MNI space. All results are displayed on a

surface view of the MNI single subject template. The juxtaposi-

tion of these results illustrates that in spite of identical primary

data and statistical processing, the results of fMRI group analyses

are indeed influenced by the applied spatial normalization. A

more detailed description and in particular a quantitative assess-

ment of these spatial normalization effects on the stereotaxic

location of local maxima (equivalent to the between-template

variance in meta-analyses) are provided in the main text.
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and the main effect (L 1 R > 0, as studies included in the
meta-analysis reported coordinates for the movement of ei-
ther hand) calculated for the fMRI data described in this
paper (see Fig. 7).
To evaluate the impact of the two theoretically moti-

vated changes to the ALE algorithm proposed in this pa-
per (explicit modeling of uncertainty, testing for conver-
gence across experiments), we also analyzed the same fin-
ger-tapping dataset using the classical ALE algorithm (see
Fig. 7). A comparison of the significant activations yielded

by either approach showed that the results were very vir-
tually identical across methods. In particular, no analysis
revealed any activation not displayed by the other method
(indicative of a higher sensitivity) nor did we observe a
diverging pattern of ALE peak locations. This implicates,
that the modifications proposed here do not lead to a
decreased sensitivity of the analysis in spite of the more
rigorous random-effects approach. Also, there was a
good correspondence between the regions which became
significant in the meta-analysis of finger-tapping experi-

Figure 4.

Localization of the statistical maxima identified for the areas listed in Table II by the nine group-

analyses using the normalization approaches shown in Table I displayed on a surface view of the

MNI single subject template. All group analyses were based on the same data from 21 subjects

and performed in the same fashion.
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TABLE IV. Stereotaxic location of the local maxima identified for the 16 brain regions listed in table 2

by random-effects group analyses of the 21 subjects depending on the normalization procedure used

to transform the individual data into the MNI reference space

Region M1 L SMA L SII L M1 R SMA R SII R V1 PCC

Lin2MNI152 236/220/54 26/28/52 248/216/22 42/216/50 10/218/50 46/220/22 0/290/16 22/244/52
Norm2MNI152 238/222/50 24/212/50 244/222/18 38/224/48 12/222/50 46/220/16 4/286/10 26/242/44
Lin2Colin 234/220/54 24/28/52 246/216/18 44/216/48 12/218/48 50/220/20 4/290/16 0/244/50
Norm2Colin 234/222/52 24/212/50 244/218/20 38/220/48 12/220/48 46/222/20 2/288/16 26/240/46
Lin2EPI 234/222/48 24/210/50 246/220/18 38/216/48 6/218/48 40/220/14 4/284/6 22/248/48
Norm2EPI 238/224/52 24/214/52 246/222/16 40/218/48 10/222/48 42/220/16 2/286/8 22/250/48
Seg2TPM 236/220/50 26/210/54 244/220/18 38/218/48 8/218/48 46/218/20 6/282/6 22/244/48
Seg2Colin 242/216/56 26/214/56 248/220/18 38/220/48 6/214/54 42/224/16 22/284/8 0/248/50
Seg2TPM2Colin 236/220/49 24/212/55 246/218/17 38/220/49 6/220/51 48/218/19 8/282/7 22/246/53
Mean 236/221/52 25/211/52 246/219/18 39/219/48 9/219/49 45/220/18 3/286/10 22/245/49
ED 5.8 4.7 4.6 4.7 5.8 6.3 8.4 6.6

Region PMC L PMC R CN L CN R V5 L V5 R PFC vPMC

Lin2MNI152 252/4/44 54/4/42 218/8/24 20/6/24 246/266/8 38/266/10 214/26/42 252/2/24
Norm2MNI152 254/22/38 52/4/36 216/10/24 26/6/28 244/268/6 42/264/8 216/32/44 258/4/24
Lin2Colin 256/2/40 58/4/42 216/8/26 24/8/24 246/266/8 42/264/8 214/26/42 258/4/26
Norm2Colin 250/2/44 52/2/38 214/10/24 24/6/26 240/264/8 42/262/8 214/32/42 258/4/28
Lin2EPI 252/2/40 54/6/46 218/8/22 22/8/26 242/266/2 42/264/22 218/38/40 260/4/22
Norm2EPI 254/22/46 56/2/42 218/6/24 22/8/26 242/270/4 44/264/2 214/38/40 260/4/24
Seg2TPM 254/24/46 54/4/46 218/10/22 20/8/24 242/266/4 44/262/2 216/32/40 260/6/26
Seg2Colin 252/24/42 56/24/42 220/4/24 18/4/26 244/268/2 42/268/0 216/34/34 262/2/26
Seg2TPM2Colin 252/22/45 56/0/45 218/10/23 20/8/23 240/264/5 44/264/1 216/34/41 258/6/27
Mean 253/0/43 55/2/42 217/8/24 22/7/25 243/266/5 42/264/4 215/32/41 258/4/25
ED 6.5 6.9 4.3 4.6 5.5 6.8 7.3 5.1

The two lowest lines denote the mean stereotaxic location (averaged across the nine different group analyses) as well as the mean Eu-
clidean distance (in mm) between the local maxima coordinates as resulting from the individual group analyses.

Figure 5.

Mean Euclidean distance between corresponding maxima (computed pairwise for all possible

combination of group-analyses) for each of the analyzed brain regions. The average across all

areas, i.e., the estimate of the between template variance (EDtemp) was 5.7 mm.
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ments and those which were activated when testing
for the main effect of single fist opening-closing move-
ments in the fMRI study reported in the present
paper. This corroboration of meta-analysis results by
fMRI data further supports the validity of the proposed
approach.

Simulation Analysis

The comparative analysis of the two simulated datasets
using the classical ALE algorithm and its revised version
then clearly pinpointed the advantages of the modified
approach.
For the analysis of the first dataset (25 studies showing a

focus in BA 44, and only one study reporting 10 additional
foci in the inferior parietal lobe), both ALE approaches
reliably detected the inferior frontal activation focus at P <

0.05 and P < 0.001 (FDR-corrected). Only the classical
(fixed-effects) algorithm, however, indicated an additional
significant convergence in the inferior parietal lobe consist-
ent with the location of the additional foci reported in one
of the studies. Importantly, this activation is entirely con-
sistent with the definition and aim of fixed-effects analy-
ses, i.e., to find significant convergence across foci (Fig.
8A). However, given that all foci converging in this region
were derived from one study only (and were hence not
present in the remaining 24 studies), this simulated analy-
sis also demonstrates the major drawback of fixed-effects
meta-analyses, i.e., their strong tendency to be dominated
by one or a few individual studies. In contrast, the revised
random-effects approach to ALE did not yield any signifi-
cance for this region (P > 0.05). Moreover, the simulations
also revealed that the fixed-effects analyses were some-
what more sensitive to noise as introduced by adding 10

Figure 6.

A1: Location of the 24 individual activation foci as reported in

an exemplary finger tapping experiment (Gerardin et al., 2000).

A2: Summary of the 883 individual activation foci reported in all

73 experiments included in the meta-analysis (cf. Table III). B1:

modeled activation (MA) map resulting from centring Gaussian

distributions of 7.02 mm FWHM (based on 8 subjects and esti-

mates of 11.6 mm for EDsub and 5.7 mm for EDtemp) at the loca-

tion of the foci displayed in A1. B2: Activation likelihood esti-

mates (ALE), reflecting, for each voxel, the union of the MA

maps (exemplified in B1) across all experiments. C1: Histogram

of the ALE scores obtained in the permutation analysis, i.e.,

under the assumption of a random spatial association between

studies. The values summarized in this histogram hence reflect

the null-distribution against which the experimental ALE scores

are compared in order to compute their respective P values.

Note, that the empirical null-distribution is sufficiently smooth

even in regions of higher ALE scores to allow a reliable attribu-

tion of significance levels to the obtained experimental ALE

scores, underlining the benefit of the large numbers of permuta-

tions used in their construction. C2: The clusters of significant

(P < 0.05, corrected) convergence across studies, i.e., significant

voxels from B2 and hence results of the performed meta-analy-

sis, as assessed by comparison with an empirical null distribution

by permutation testing (cf. C1). All data is displayed on a surface

view of the MNI single subject template.
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foci to each study, which were randomly located across
the grey matter. While it should be noted, that 5% false-
positives are expected when thresholding at a FDR cor-
rected significance level of P < 0.05, activation outside of
BA 44 (i.e., the true convergence of the simulated foci) was
not observed in the more conservative random-effects
approach.
The ALE analysis of the second dataset featuring four

tightly clustered foci (from studies investigating larger
samples), and 21 more variable foci (from studies with rel-
atively small sample sizes) showed that both algorithms
correctly identified the respective convergence of the data
in the inferior frontal gyrus (Fig. 8B). As hypothesized
from the scaling of the FWHM by the sample size, how-

ever, the significant activation was more confined when
the revised approach was used. This observation, which
was independent of the applied threshold, indicates that
the proposed uncertainty model reasonably weights the
localizing power of individual studies in favor for those
with larger sample sizes. Similar to the results of the first
simulated dataset, classical ALE meta-analysis also showed
significant results in other parts of the brain, while such
spurious convergence was rejected by the modified ALE
algorithm.
In summary, the simulated analyses and the meta-analy-

sis of real fingertapping experiments suggest that the re-
vised ALE approach features a higher specificity than the
classical algorithm employing a fixed-effects model and a
predefined FWHM, while sensitivity is comparable with
that of previous ALE algorithms.

DISCUSSION

In this report we outlined a revision of the ALE algo-
rithm for coordinate-based neuroimaging meta-analyses
addressing several shortcomings of the original implemen-
tation: By providing empirical estimates for between-sub-
ject and between-template variability, the subjective choice
of FWHM for the Gaussian probability distributions could
be replaced by a quantitative uncertainty model. The infer-
ence on the ensuing ALE maps was constrained to grey
matter voxels and modified to reflect a null-hypothesis of
random spatial association between experiments (random-
effects) rather than foci (fixed-effects).

Spatial Variability of Neuroimaging Results

In spite of high number of functional neuroimaging
experiments in recent years, surprisingly few studies
investigated between-subject variability using current
imaging protocols [la-Justina et al., 2008; Otzenberger
et al., 2005; Seghier et al., 2004] and none provided quanti-
tative estimates of the spatial uncertainty associated with
reported stereotaxic coordinates. Earlier work, comparing
the spatial uncertainty associated with fMRI and PET
images, however, found these to be comparable between
both imaging techniques. In these reports, the average
inter-subject distance of functional activations was gener-
ally estimated in the range of 10–20 mm [Bookheimer
et al., 1997; Clark et al., 1996; Fox et al., 1999, 2001;
Hasnain et al., 1998; Xiong et al., 2000]. These studies
hence suggested a somewhat higher between-subject var-
iance as opposed to our current data, which may be attrib-
utable to the fact that more recent neuroimaging studies
trend to employ smaller voxel sizes and that normalization
procedures have generally become more refined over the
course of continued development.
There have already been quantitative evaluations of

inter-subject realignment using the dispersion of anatomi-
cal landmarks after spatial normalization [Ardekani et al.,
2005; Grachev et al., 1999; Hammers et al., 2002; Hellier

Figure 7.

Comparison of the results obtained for the coordinate-based

meta-analysis as performed using the classical ALE algorithm (10

mm FWHM, fixed-effects inference, no grey-matter mask) and

the new approach outlined in the present paper (FWHM based

on empirically derived variance mode, random-effects inference,

grey matter mask). For comparison the results obtained in the

present fMRI study for the contrast ‘‘L 1 R > 0’’ (as also the

studies included in the meta-analysis reported coordinates for

the movement of either hand). All data is displayed on a surface

view of the MNI single subject template.
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et al., 2003]. In these studies, the residual anatomical
uncertainty was different between regions (lower for sub-
cortical regions) but generally estimated in the range of 6–

9 mm average ED between corresponding landmarks.
While we could confirm the generally lower variability in
subcortical regions, the inter-subject variability of local

Figure 8.
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BOLD maxima was clearly higher than that of anatomical
landmarks. Our results hence imply that between-subject
variability in functional neuroanatomy can only partially
be explained by the inexactness of spatial normalization.
This argument is further supported by the observation that
functional variability was similar for all normalization
approaches tested. It seems, therefore, that the observed
dispersion of local maxima is a direct reflection of the
microstructural variability of the cortex rendering the loca-
tion of cortical areas partially independent of cortical land-
marks [Amunts et al., 2004; Eickhoff et al., 2006b; Grefkes
et al., 2001; Malikovic et al., 2007; Rottschy et al., 2007].
Our analysis moreover showed that the between-subject
variance was inhomogeneous across brain regions. The
smallest variability was found for the caudate nucleus,
while the PFC was particularly variable. It must be
assumed that both biological and technical effects contrib-
ute to these differences: The functional neuroanatomy of
regions like the PFC is more variable due to pronounced
inter-individual differences in the relative size and shape
of the different areas jointly occupying this part of the
brain. This increased variability of ‘‘higher’’ cortical
regions, compared to primary areas, has been well docu-
mented in neuroimaging experiments and histological
mapping studies [Caspers et al., 2008; Hasnain et al., 1998;
Scheperjans et al., 2007; Walters et al., in press; Watson
et al., 1992; Xiong et al., 2000 Zilles et al., 2003]. The less
conserved cortical organization may provide an important
biological basis for the observation that some regions show
a higher inter-individual variability in the location of func-
tional activations. From this line of argument, the high var-
iability of M1 activations seems surprising at first. It may,
however, be explained by between-subject variability in
the topological arrangement of different body parts in this
somatotopically organized area. In summary, there is
hence clear evidence for a biological underpinning of the
inter-regional differences in variability. It should, however,
also be considered that some particularly variable areas
(like the PFC) are at the same time located in brain regions
where normalization into standard space is usually less
reliable due to the absence of prominent anatomical land-
marks and marked inter-individual differences in cortical
folding pattern. In contrast, macroanatomically distinct

and less variable structures like the caudate nucleus may
be normalized more reliably by automated registration
algorithms. This was shown by previous analyses of the
registration accuracy for various cortical and subcortical
landmarks, showing best accuracy for subcortical struc-
tures and those located close to the major cortical land-
marks [Grachev et al., 1999; Hellier et al., 2003]. Some of
the differences evident in Figure 2 may hence not be bio-
logical in nature but result from in local homogeneities in
image registration precision.

Uncertainty Modeling

In the original ALE approach, literature foci were mod-
eled by Gaussian probability distributions of identical,
user specified width [Laird et al., 2005; Turkeltaub et al.,
2002]. This approach was now modified in favor of a more
flexible and principled solution. Here the size of the mod-
eled probability distribution that is to reflect the ‘‘true’’
location of a reported activation is based on the spatial
uncertainty associated with each experiment. In order to
explicitly model this uncertainty, empirical estimates of
both between-subject and between-template (inter-labora-
tory) were provided in the present study. These were sub-
sequently used to model the spatial uncertainty associated
with each particular set of coordinates when performing
the ALE computation. It should be noted, that the current
algorithm models the spatial uncertainty associated with
the foci reported in a particular experiment using the same
Gaussian distribution widths across all brain regions. The-
oretically, however, it would be very straightforward to
incorporate nonstationary variances in the proposed model
in order to account for regionally specific uncertainties by
substituting the (grand mean) Euclidean distances in for-
mula (1) by local estimates depending on the position of a
particular focus. In practice, however, one major obstacle
renders this approach unfeasible at present: The computa-
tion of regionally specific uncertainty models requires em-
pirical data for each region or ideally every voxel of the
reference space. In the present study, we demonstrated
how estimates for the between-subject and between-tem-
plate variances could be derived by investigating 14 corti-
cal and 2 subcortical brain regions. To our knowledge, this

Figure 8.

Results of the two simulated ALE analyses. The dataset exam-

ined in panel (A) consisted of 25 studies (12 subjects each) each

featuring one focus in BA 44 and 10 randomly distributed addi-

tional foci. Moreover, a single study reported 10 foci in the infe-

rior parietal lobule. Classical ALE analysis indicated significance

for both regions (and locations of unintentional convergence

between the random foci). In turn, the revised random-effects

approach revealed only the inferior frontal gyrus to have a true

convergence between foci from different experiments. The data-

set examined in panel (B) consisted of four studies investigating

30 subjects showing well localized foci in BA 44 and 21 studies

investigating four subjects featuring more variable foci (each

study also contained 10 randomly distributed foci). As hypothe-

sized from the scaling of the FWHM by the sample size, the sig-

nificant activation was more confined when the revised approach

was used, confirming that the revised approach does indeed give

higher localizing power to larger and hence more representative

studies. As in the first dataset, classical ALE analysis but not the

more conservative random-effects approach also revealed spuri-

ous convergence between the random foci.
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analysis constitutes the most comprehensive assessment of
variance associated with functional imaging data to date.
It is nevertheless still clearly not sufficient to generate a
whole-brain variance map. Such a map, however, would
be a prerequisite for a more flexible model representing
regionally specific uncertainties. Given an adequate
amount of empirical data on the spatial variability of func-
tional imaging results in various brain regions (which
could be derived from a series of experiments employing a
similar approach as described here), however, such a map
could be constructed and then readily be integrated into
the proposed framework.
While the motivation for modeling between-template

variance is straightforward (coordinates from any of the
normalization approaches described here would be
reported as ‘‘MNI space’’), including the between-subject
variance in meta-analyses of group results may seem coun-
terintuitive. The main reason for this approach is the small
sample size in typical neuroimaging studies and the result-
ing influence of unsystematic sampling errors on the local-
ization of group results. It should moreover be noted, that
in the proposed model the between-subject variance is
inverse scaled by the (square root of the) sample size. This
accounts for the notion, that an activation reported in a
study examining a small sample size is potentially less
reliable as these results are more susceptible to individual
outliers (in a single case, the added uncertainty equal
between-subject variance). Conversely, if the sample size
increases the sampling error and hence the uncertainly
associated with a given focus will decrease.
Using the outlined model, foci derived from studies

examining many subjects will hence be modeled by tighter
distributions as compared to those foci that were reported
in experiments investigating fewer subjects. Consequently,
foci provided by the latter studies will be more blurred
and have less localizing impact on the ALE maps. In other
words, studies that provide the most reliable information
about the location of a particular process also receive the
highest weight in the meta-analysis. Modeling the reduced
spatial uncertainty in larger studies may therefore repre-
sent a well-motivated approach to weighting the sample
size for coordinate-based meta-analyses. The comparative
ALE meta-analyses of simulated datasets using both the
original and the revised ALE approach clearly showed
that the revised ALE model does indeed give a higher
localizing power to larger studies (cf. Fig. 8B). Assuming
that larger studies are less susceptible to sampling errors
and hence report local maxima closer to their true location
(as in our simulations), we suggest that this modification
should result in a higher validity of coordinate-based
meta-analysis results. In contrast to the simulated datasets,
differences between both algorithms were inconspicuous
in the analysis of the real finger-tapping data. This obser-
vation may predominantly be attributable to the rather
small range of sample sizes among the analyzed experi-
ments. In particular, 28 of the 37 included experiments
were based on the analysis of groups comprising between

8 and 13 subjects. In comparison to the more extreme sit-
uation in the simulated data, the influence of the specifi-
cally computed uncertainty was consequently much lower.
The second major advantage of the proposed uncertainty
model, however, also pertains to the exemplary analysis
presented here: Unlike previous algorithms using ALE or
kernel density estimation (KDE), the revised meta-analysis
approach does not require the kernel width to be subjec-
tively specified by the user but rather makes use of an
(empirical) model for spatial uncertainty.

Random Effects Versus Fixed-Effects Analyses

In the original ALE algorithm permutation testing is per-
formed by randomly relocating foci across the brain result-
ing in a null-distribution for above-chance clustering of
individual activations. The object of meta-analyses, how-
ever, should pertain to above chance clustering between
experiments rather than a convergence across individual
foci. This difference becomes most evident, when consider-
ing, that in some studies several different coordinates for
local maxima within the same (larger) activation may be
reported. In this case, an observed above-chance clustering
of these coordinates may not indicate convergence between
(independent) experiments, but just a clustering of foci
within a single one of the included experiments. To focus
on the convergence of information across studies the (non-
informative) clustering between individual foci reported
for any given experiment should hence be considered
fixed. This approach has been implemented in the current
version of the ALE algorithm by computing a ‘‘modeled’’
activation (MA) volume for each individual experiment as
the sum of the Gaussian probability distribution for its
foci. ALE scores are then obtained by the (voxel-wise)
union of these MA maps across studies. To compute the
appropriate null-distribution, one random voxel is drawn
from each MA map (discarding its spatial location), and
an ALE score is computed. By repeating this procedure, a
null-distribution is constructed reflecting a random spatial
association between different studies. Comparing the
‘‘true’’ ALE score to this distribution then allows focusing
inference only on convergence between studies while pre-
serving the relationship between individual foci within
each study. Critically, this modification is conceptually
equivalent to the distinction between a fixed-effect analy-
sis, allowing generalization only to the studies included in
the analysis, and a random-effects model, allowing an in-
ference about the population of studies from which the an-
alyzed experiments were drawn. In the current paper,
both approaches were compared to each other based on
real (meta-analysis of finger tapping experiments) and
simulated datasets. Interestingly, the analysis of the finger
tapping data did not show pronounced differences
between both algorithms. These congruent results indicate
that the activations revealed by the classical ALE analysis
of this dataset were predominantly driven by random-
effects (i.e., convergence between studies). In the simula-
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tion analysis, however, we also tested a case where the
assumption that a convergence between foci is equivalent
to a convergence between experiments was explicitly vio-
lated. In particular, we simulated a dataset, which con-
tained a region of strongly converging foci across different
experiments as well as a second region, which also
showed a strong convergence between foci. Critically,
however, all of these foci were derived from the same
original experiment. That is, there was a dissociation
between a fixed-effects convergence across foci (which was
present) and a random-effects convergence across studies
(which was absent). Comparative analysis then showed,
that the classical ALE approach indicated significance for
both regions (as well as for other locations of accidental
convergence between the randomly allocated foci). In con-
trast, the random-effects approach described here revealed
the inferior frontal gyrus as the only region where a true
convergence between foci reported in different experi-
ments occurred. This (simulated) example highlights the
more conservative approach taken by random-effects anal-
yses and provides a strong argument for the increased
specificity (though apparently not reduced sensitivity)
achieved by the revision of the classical ALE algorithm.
An alternative technique allowing random-effects infer-

ence in coordinate-based meta-analysis is KDE. Both KDE
and ALE aim at identifying locations where reported coor-
dinates show a higher convergence as expectable by
chance, but they do so using different approaches. ALE
investigates how much the location probabilities modeled
for each study overlap in different voxels. KDE, on the
other hand, assesses how many foci are reported close to
any individual voxel [Wager et al., 2007]. The concept of
RDFX-analyses is nevertheless very similar between the
algorithm described here and multi-level kernel density
estimation (MKDE). In particular, in both approaches
RDFX analyses are based on summarizing all foci reported
for any given study in a single image (the ‘‘modeled acti-
vation’’ (MA) map in ALE and ‘‘comparison indicator
maps’’ (CIM) in MKDE). These are then combined across
studies. Inference is subsequently sought on those voxels
where MA maps (ALE) or CIMs (MKDE) overlap stronger
as would be expected if there were a random spatial
arrangement, i.e., no correspondence between studies.
Both approaches also use a weighting for the study size
based on the square root of the number of subjects. While
this factor is multiplicative in KDE, however, it influences
the obtained uncertainty model in our approach (cf. for-
mula 3). Other differences pertain to the permutation algo-
rithm (randomly relocating cluster centers versus combin-
ing randomly selected voxels) and the fact, that MKDE
uses a discount-factor for fixed-effect studies, which is not
the case in the approach described here.

Restriction of Analysis Space

Neuroimaging using fMRI and PET is based on hemody-
namic changes initiated by vasodilatory mediators released

by cortical and subcortical grey matter under increased
computational and metabolic demand [Buxton et al., 2004;
Fox and Raichle, 1986; Logothetis, 2003]. Conversely, white
matter, consisting only of fibre bundles, may not be
expected to show task evoked changes in blood flow. Acti-
vations should hence be confined to cortical and subcortical
grey matter, even when considering the spatial dispersion of
hemodynamic signals [Buxton et al., 2004; Fox and Raichle,
1986; Logothetis, 2003]. This assumption was retrospectively
confirmed by analyzing the location of 35,196 activation foci
included in the BrainMap database. After transformation
into MNI space, 98.5% of these foci were located within the
grey matter ROI used in our algorithm.
The fact that ‘‘true’’ activations occur almost exclusively

in grey matter has important implications for the applied
permutation test. In particular, if all intracranial voxels
were to be included in this procedure, many of them
would be drawn from regions where activation is known
to be absent, like the ventricles or the deep white matter.
Evidently, these regions will show values close to zero in
their MA maps. Hence, the null-distribution will become
left skewed and the significance of the experimental ALE
scores is overestimated. To correct for this bias and to pro-
vide a null-distribution closer to the experimental situa-
tion, the analysis space of the modified ALE algorithm
was restricted to those voxels of the MNI space, where the
probability for grey matter was >10%.

CONCLUSIONS

The proposed revision of the ALE algorithm overcomes
several important drawbacks of the original implementa-
tion, namely the need for a manually defined width of the
localization probability distribution, the anatomically unin-
formed analysis space and its fixed-effects inference. In
order to address the first shortcoming, we provided empir-
ical estimates for between-subject and between-template
variance of neuroimaging foci. The subsequent analysis
was then revised in order to test for convergence between
studies (random-effects) rather than foci (fixed-effects).
This was achieved by a modification of the permutation
procedure, which now reflects a null-distribution of a ran-
dom spatial association between studies not between foci.
Importantly, this change to a random-effects approach
now allows generalization of the results to the entire popu-
lation of studies from which the analyzed one were drawn.
Finally, rather than analyzing each voxel in the reference
space, including those in deep white matter or the ven-
tricles, the revised ALE algorithm now works with an
explicit grey matter mask, solving the problem of an ana-
tomically uninformed analysis space.
Importantly, we could show that the results derived

from this novel, theoretically motivated algorithm to ALE
meta-analysis are comparable to those obtained from pre-
vious implementations and experimental fMRI data. Simu-
lation analysis confirmed this observation and demon-
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strated that the revised approach has a better specificity
than classical ALE analysis while retaining the high sensi-
tivity of the previous approach. Incorporated into the
BrainMap application GingerALE, the revised ALE algo-
rithm will thus provide an improved tool for conducting
coordinate-based meta-analyses on functional imaging
data, which in turn should become of growing importance
for summarizing the multitude of results obtained by neu-
roimaging research.
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